Identification of Ozonides by Oxygen-17 NMR Spectroscopy

J. Lauterwein, * a K. Griesbaum, * b P. Krieger-Beck, b V. Ball b and K. Schlindwein b

^a Organisch-Chemisches Institut, Universität Münster, D-4400 Münster, Germany

^b Engler-Bunte-Institut, Bereich Petrochemie, Universität Karlsruhe, D-7500 Karlsruhe, Germany

In the natural abundance ¹⁷O NMR spectra of seven 1,2,4-trioxolanes (ozonides), the resonance of the peroxide and of the ether oxygens are clearly separated and allow structural identifications.

To our knowledge, ¹⁷O NMR data for only one ozonide have been reported so far, *viz*. those of the ozonide of 1,2dimethylcyclobutene.¹ We report here the natural abundance ¹⁷O NMR spectra of the seven ozonides **1a**, **1b**, **2a**, **2b**, **3a**, **3b** and **4** and of the 1,2,4,5-tetroxane **5**. Table 1 gives the ¹⁷O chemical shifts and linewidths of these compounds, measured at 27 °C in toluene. No concentration effects on the chemical shifts were observed within the accuracy of the measurements (± 2 ppm).

The spectrum of each ozonide showed two well resolved signals ($\Delta \delta \ge 160$ ppm at individual linewidths <15 ppm), which by integration could be assigned to the ether-type oxygen at low frequency and the peroxide oxygens at high frequency (relative intensity ratio 1:2). Fig. 1 shows, as an example, the ¹⁷O NMR spectra of ozonide **4** and the related tetroxane **5**.

The chemical shifts of the peroxide oxygens in the ozonides were between δ 295 and 331, *i.e.* they are shifted to higher frequencies relative to those of acyclic peroxides such as di-*tert*-butyl peroxide (δ 260),² and they appear at the upper end of the rather large chemical shift range (*viz.* δ 232–318)

Table 1 ¹⁷O NMR data of seven ozonides and of a 1,2,4,5-tetroxane"

	Chemical sh	hifts $(\delta)^{b,c}$	
Compound	-0-	-0-0-	
la	106 (250)	306 (510)	
1b ^e	106 (250)	297 (570)	
$2\mathbf{a}^{f}$	139 (253)	310. 320 ^d	
2b f	146 (257)	329, 333 <i>d</i>	
3a ^g	172 (482)	327 (750)	
3b g	162 (466)	319 (717)	
4 ^h	129 (450)	295 (720)	
5 h		256	

^{*a*} All compounds were obtained by ozonolysis of the corresponding alkenes on polyethylene and characterized by ¹H and ¹³C NMR spectra as well as elemental analyses. Details will be reported elsewhere.⁷⁻¹⁰⁻¹⁷O NMR spectra were recorded on a Bruker AM-360 instrument operating at 48.8 MHz. ^{*b*} In ppm relative to 1,4-dioxane used as external reference, +0.2 ppm relative to water.^{5 c} Numbers in parentheses refer to linewidths at half-height, in Hz. ^{*d*} Composite signal. ^{*c*} Ref. 7. ^{*f*} Ref. 8. ^{*g*} Ref. 9. ^{*h*} Ref. 10.

given by Zagorski et al.1 for a series of cyclic peroxides. The latter authors did not find a straightforward correlation between ¹⁷O chemical shifts and atomic charge or ionisation potentials in peroxides. However, they suggested that conformational changes contributed to the variation in ¹⁷O chemical shifts. It was confirmed, qualitatively, that the dihedral angle C-O-O-C decreases as the chemical shift increases.^{1,3} Therefore, since the chemical shifts of the peroxide oxygens in the seven ozonides are very large, we can tentatively conclude that the C-O-O-C dihedral angles in these ozonides are close to 0° . The spectrum of the 1,2,4,5-tetroxane **5** showed only one signal for the peroxide oxygens, which were shielded by approx. 40 ppm relative to those in 4, thus suggesting considerable deviation from planarity in both C-O-O-C units. Obviously, the above conclusion assumes that in the ozonides the peroxide oxygen chemical shifts are only sterically influenced by the ether oxygen, and not affected considerably by inductive effects (β deshielding). However, the chemical shift values for systems with several functional groups result from the interaction of several factors which cannot be readily accounted for at this time.³

The chemical shifts of the ether oxygens in the seven ozonides were between δ 105 and 173. This means that they are shifted to high frequencies relative to dialkyl ethers (between δ –52 and 76),² and also relative to polycyclic ethers (*e.g.* δ 85.5 in 7-oxanorbonane).⁴ Obviously, there is strong β deshielding by the peroxide oxygens, comparable to the shifts of ketals relative to ethers.² A deshielding of the ether oxygen in **4** by +23 ppm relative to that in **1** can be ascribed to the

doubling of the β and γ effects, the former dominating the latter (up to +30 and -12 ppm, respectively, in ethers).² A further shift to high frequency occurred in ozonides **2**, which can be explained by the effect of steric strain. Obviously, this shift⁴ fades with increasing ring size. A low frequency shift of the ether resonance in **2a** by 7 ppm relative to **2b** can be ascribed to a strong γ effect, similar to that obtained by interaction between the oxygen and the methano-bridge carbon in norbornene *exo*-oxide.⁶

It is obvious from the data reported that ¹⁷O NMR spectroscopy can be recommended as an additional tool for the characterization of ozonides. Moreover, as shown by the differences in the spectra of compounds **4** and **5**, the method provides a powerful tool for the unequivocal differentiation between ozonides and 1,2,4,5-tetroxanes, the so-called 'dimeric peroxides' which are often co-products in ozonolysis reactions.¹¹

Support of this work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Received, 15th March 1991; Com. 1/01234G

References

- 1 M. G. Zagorski, D. S. Allan, R. G. Salomon, E. L. Clennan, P. C. Heah and R. P. L'Esperance, *J. Org. Chem.*, 1985, **50**, 4484.
- 2 J.-P. Kintzinger, in NMR—Basic Principles and Progress, ed. P. Diehl, E. Fluck and R. Kosfeld, Springer, Berlin, 1981, vol. 17, pp. 1–64.
- 3 D. W. Boykin and A. L. Baumstark, *Tetrahedron*, 1989, **45**, 3613. 4 T. T. T. Nguyën, C. Delseth, J.-P. Kintzinger, P.-A. Carrupt and
- P. Vogel, Tetrahedron, 1980, 36, 2793.
- 5 I. P. Gerothanassis and J. Lauterwein, *Magn. Reson. Chem.*, 1986, **24**, 1034.
- 6 H. Iwamura, T. Sugawara, Y. Kawada, K. Tori, R. Muneyuki and R. Noyori, *Tetrahedron Lett.*, 1979, 36, 3449.
- 7 K. Griesbaum and V. Ball, unpublished results
- 8 K. Griesbaum, P. Krieger-Beck and J. Beck, J. Org. Chem., in the press.
- 9 K. Griesbaum and K. Schlindwein, unpublished results.
- 10 K. Griesbaum, P. Krieger-Beck and J. Beck, *Chem. Ber.*, 1991, **124**, 391.
- 11 M. Camporeale, L. Cassidei, R. Mello, O. Sciacovelli, L. Treisi, R. Curci, in *The Role of Oxygen in Chemistry and Biochemistry*, ed. W. Ando and Y. Moro-oka, Studies in Organic Chemistry, Elsevier, Amsterdam, 1988, vol. 33, pp. 201–210.